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J .  Phys. A: Math. Gen. 16 (1983) L611-L616. Printed in Great Britain 

LETI'ER TO THE EDITOR 

The moles' labyrinth: a growth model 

H J Herrmann 
Service de physique thCorique, CEN Saclay, 91 191 Gif-sur-Yvette CCdex, France 

Received 25 July 1983 

Abstract. We present a simple model for the simultaneous growth of many clusters. A 
phenomenological theory and simulations in two and three dimensions for this model are 
presented which describe the critical point where, for the first time, an infinitely large 
cluster is formed by the coalescence of individual clusters. This critical point is not in the 
universality class of standard percolation. 

Geometrical growth models are of practical importance in many areas but only recently 
has one begun to study them in the context of critical phenomena (Stanley et a1 1983). 
For the growth of a single cluster several models that show the generic problems of 
the time dependence have been studied (Amit et a1 1983, Witten and Sander 1982, 
1983, Savada et a1 1982, Chandler et a1 1982). For these models the critical 
phenomenon occurs in the limit of infinite time and is described by the fractal dimension 
of the cluster. The other case of practical interest is the simultaneous growth of many 
clusters (polymerisation, coagulation, antigen-antibody reaction etc). In this case the 
critical point is the time t ,  at which for the first time an infinitely large cluster is formed. 
The former belief that this critical point is always of percolation type has been ruled 
out by two different types of studies (Herrmann et a1 1982, 1983, Ziff et a1 1982a, b). 
But unfortunately the models studied there and subsequently investigated similar 
models for additive polymerisation (Bansil et a1 1983, Rushton et a1 1983, Pandey et 
a1 1983)-although they have explained many experimental details-are not very 
helpful for an understanding of the growth as a critical phenomenon because they are 
too complicated. So we present in this letter a simple model which already contains 
typical features encountered in previously studied growth models of many clusters. 

In a D-dimensional lattice of size LD we choose (regularly or at random) C,LD 
sites from each of which we start a random walk. The paths formed by the walks will 
be considered (figure 1) and the question is asked when the system formed by the 
paths percolates, i.e. when there is a cluster of paths formed which spans over the 
whole lattice. The case L + 00 and C, << 1 is of particular interest. 

This model can be interpreted in two dimensions as a description ofthe labyrinth 
formed by moles. One places moles with an (average) distance of 1/JC, in the earth 
at a given depth. Simultaneously they then dig runs in a random way and without 
changing the depth. The moles have a vital interest in the critical time t ,  at which for 
the first time their runs have intersected each other enough so that there exists one 
network of paths through which they could escape as far as they want. (At t,, of 
course, not yet all the moles will have direct connection to this network). 

Keeping the language of moles on the lattice we define one growth step of the 
labyrinth as follows: choose a mole randomly; choose one direction randomly and 
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Figure 1. Different stages of the growth of a labyrinth on a 100 X 100 lattice with periodic 
boundary conditions. The moles are marked by a full circle. The initial positions of the 
moles (crosses) are regularly distributed with a concentration C,=O.O025. (a) ,  r = 100, 
m=0.121, Pm=0.073; ( b ) ,  r=280, m=0.273, P,=0.246; (c), r=440-fc,  m=0.380, 
Pm=0.880; ( d ) ,  r=720, m=0.526, Pm=l.O. 

displace the mole in this direction by one lattice spacing. After CILD such growth 
steps on average every mole has moved once. So we define the ‘time’ by 

t = N /  CILD (1) 
where N is the total number of growth steps. The t defined in equation (1) is also 
the mean length of a path. In figure 1 we show a labyrinth grown from an initial 
regular distribution of moles at different times. One cluster is given by all lattice sites 
that are connected. Note that in figure 1, sites on opposite boundaries can be connected 
because we use periodic boundary conditions in the simulation. We denote by m the 
fraction of all the sites of the lattice that are touched by a path at a given time. The 
fraction of sites touched by a path that belongs to the largest cluster divided by m is 
P,. In the thermodynamic limit ( L +  m)(P,) plays the role of the order parameter of 
the transition where ( ) denotes the average over all different possible growths. If the 
initial distribution is random one has to average in addition over all possible initial 
configurations. A quality which is suited for the study of the critical behaviour is the 
mean squared cluster size x 

x = ( ; s’-s’)/r” (2) 

where the sum goes over all clusters and S(S, )  is the number of sites in the (largest) 
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cluster. x diverges at tc like 

,y = c*lt- tcl-y (3) 

R = CJC, (4) 

where C+ is the value for t > tc and C- the value for t < t,. The exponent y and the ratio 

are universal quantities for standard percolation in the renormalisation group sense 
(Stauffer 1979, Aharony 1980). 

Before analysing x in more detail we will study the location of the critical time t ,  
in dependence of the concentration C, for the case of a regulg initial distribution of 
moles. Each path is an object of a mean square radius of l X J t .  For 0 .c - 4 the critical 
time may be characterised by the time when these objects touch each other, i.e. when 
I D  a 1/ C,. Thus we have 

t C a  c ; ~ / ~ .  ( 5 )  

Simulations made in 2 0  and 3 0  for values of C, over several orders of magnitude 
support equation ( 5 )  as shown in figure 2. Let us now determine t, by a mean-field 
argument of the Flory-Stockmayer-type (Flory 1953). The critical time tc is reached 
when the mean number X of times that one path crosses other paths is exactly one. 

I I 

1 0 - L  1 o - ~  10-2 10 
CI 

Figure 2. Log-log plot of the critical time t, against concentration C, for the case of regular 
initiation. For two dimensions (full circles) the slope is -1 ,  for three dimensions (open circles) 
the slope is - 3. 

At time t a chain crosses in the mean (C,LD-  l)t/LD other paths. So up to a,time 7 

one path has crossed 

X=(C, - l /LD)  2 t 
1-1 

other paths and thus tc is given by 

t c a  C;1/2 (7) 
in the limit L + CO, C, << 1. This is the same result as obtained for additive polymerisation 
with Flory-Stockmayer theory (Bansil et a1 1983). Comparing equations (5) and (7) 
shows that the mean-field theory becomes correct for 0 = 4 thus implying that the 
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upper critical dimension for this problem is 4 and not 6 as for standard percolation. 
So already from this argument we see that our growth model is not in the same 
universality class as standard percolation thus supporting the picture obtained from 
other growth models (Herrmann 1982, Ziff er a1 1982a, b, Rushton et a1 1983). Let 
us point out here that also for self-avoiding walks the upper critical dimension is found 
to decrease (from 4 to 2) when, instead of giving all configurations the same weight, 
the walks are grown in a straightforward way (Amit et a1 1983). 

We will now present the results of a Monte Carlo simulation of our growth model 
to obtain the y and R defined in equations (3) and (4) in a similar way to Herrmann 
et a1 (1982, 1983). First we will discuss the three-dimensional case. In figure 3 (a )  
we plot double logarithmically ,y against It- r&t, for C, = 0.001. The critical time t, 
is obtained by the requirement that the slopes of the curves (i.e. y )  should be equal 
above and below t,. We obtain t, = 50 * 1. Every point in the curve is an average over 
20 to 200 samples. Below r, finite size effects become visible as a systematic deviation 
between the points of the 803 and the 603 lattice. Above r, the asymptotic scaling 
region is smaller than below t, and strong corrections to scaling are present. By plotting 
~ ( 1 0 0 - t )  against ( t - t c ) / t c  in figure 3(b) we expect to find the same slope y as 
before but the deviations far from t ,  are less strong and we can see a straight line over 
a wider range of values. The result of our analysis is y = 2.4 f 0.4 and R = 7 f 2. 
Compared with the values y = 1.8 and R = 10 from standard percolation, y is higher 
and R lower in our model but apparently only by an insignificant amount. However, 
making the same analysis for smaller Cl (C,=0.000125), as shown in figure 4(a) ,  
yields y = 3.4 f 0.6 and R = 6 * 3. The deviation from the standard percolation values 
is in the same sense as for C, = 0.001 and the value for y is significantly higher than 
the y of standard percolation. If instead of a regular initial distribution of moles one 
takes a random initial distribution one obtains for CI=O.OO1, figure 4(b) and the 
values y = 2.6 f 0.5 and R = 2 f 2. Here R is noticeably smaller than the value for 
standard percolation. Summarising, we found a very similar picture to that found in 
the gelation model in 0 = 3  (Herrmann et a1 1982, 1983): compared with standard 
percolation there is a smaller R and larger y and the effects depends on C, in the 

X 

I f -  f ,  I It, 

1 i 
I t - t ,  I I f ,  

Figure 3. Log-log plot of: ( a ) ,  x and ( b ) ,  ~ ( 1 0 0 -  t )  Figure 4. Log-log plot of x against 
against It- t ,~/ t ,  for lattices of size 803 (0) and 603 It - tcl/tc for lattices of size 803 (0 for r i t ,  and 0 for 
(A) .  The broken lines are guides to the eye of slope t > f,) and 603 (A).  ( a ) ,  Regular initial distribution, 
2.4. The critical time used is 1, = 50. C, =0.000125, t ,  = 200; ( b ) ,  random initial distribu- 

tion, C, = 0.001, 1, = 42.3. 
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sense that it becomes stronger if CI is decreased. Apparently the case of random initial 
distribution comes closer to the gelation model. 

The results of the two-dimensional simulation with a regular initial distribution are 
presented in figure 5 .  In figure 5(a )  ,y is double-logarithmically plotted against It- t,l/t ,  
for C, = 0.01. The situation is similar to that in three dimensions with the difference 
that below f, the limit of the asymptotic region cannot be estimated because the 
curvature produced by the correction terms is in the same sense as the finite-size effect. 
Byplottinginstead~fC~against ( t c -  t ) / t  below ?,and,y(2tC- f)CIagainst ( t -  t c ) / ( 2 t c -  t )  
above f, in figure 5(b ) ,  the slope y and ratio R should be preserved and the curve for 
f < f, is now slightly S-shaped, f, = 55 f 2 yields parallel curves above and below t,. 
From figure 5 (  b )  we obtain y = 2.0* 0.4 and R = 7 f  3. The difference between the 
effective slope for t < f, in figure 5 ( a )  and the y obtained from figure 5 ( b )  shows that 
in two dimensions much stronger corrections to scaling are present below t, than in 
three dimensions. In figure 5 ( c )  we make the same analysis as in figure 5 ( b )  for 
C, = 0.0004 and obtain f, = 1375 f 50, y = 2.3 * 0.4 and R = 18 * 10. Compared to the 
values of standard percolation, y = 43/ 18 and R = 200, only the ratios R of our model 
are distinguishably smaller. We note that in gelation models, different values of y 
were also found (Rushton el a1 1983). 

.. r ' ' ";b; ' """" :;+ ' """" r \  (cl  ' """" I 

! , , , , , , , , , , , - 
0.03 0.1 0.3 1 

-it 

l t - t r l / t c  I t , - t l / t  for f < f c  I t , - t l / t  f o r  t c t ,  
I t - t ,  ) / ( 2 t , - t i f o r t > t ,  ( t - t ,  ) / ( 2 t , - t  I f o r t > t c  

Figure 5. (a), Log-log plot of x against It - f c l /  t, (left axis); ( b ) ,  and (c),for t < t,: XtCI against 
( t c -  t ) / t  and for t >  t,: ,y(2tc- t)Cl against ( t -  tc)/(2tc-t) (right axis). Lattice sizes: 100' 
(0),200'  (A), 300' (O)and400' (V),regularinitialdistribution. (a)and ( b )  are for C, = 0.01 
and t , = 5 5 ,  (c )  is for C1=0.004and tc=1375. 

We have presented a simple growth model which, although it has a threshold in 
time where it percolates, does not belong to the universality class of standard percola- 
tion. It has upper critical dimension 4 and its critical exponent y differs in 3~ from 
the value of standard percolation. The ratio R of the critical amplitudes of the 
mean-square cluster size is smaller than the ratio of standard percolation in ZD and 
3 ~ .  Under changes of the concentration Ct the model has similar behaviour to 3~ 
gelation models. Further studies on random initiation and repulsion are under way 
and will be presented elsewhere. 

I thank J des Cloiseaux, J M Luck, J P Nadal and D Stauffer for interesting discussions. 
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